Potentiostat / Galvanostat $EC301 - \pm 30 \ V$ compliance voltage, $\pm 1 \ A$ maximum current - ±30 V compliance voltage - ±1 A maximum current - $\cdot \pm 15$ V polarization range - Front-panel setup and operation - Free full-featured Windows software - · 1 MHz control bandwidth for EIS - Ramps from 0.1 mV/s to 10 kV/s - Ethernet and GPIB interfaces • EC301 ... \$7990 (U.S. list) # EC301 Potentiostat / Galvanostat The EC301 gives electrochemists the opportunity to equip their labs with high compliance, research-grade instrumentation at a very attractive price. Stand-alone front-panel operation allows easy use in the field or in handling routine electrode preparation. The free Windows software (SRSLab) has routines for all major electrochemical experiments and can be downloaded from the SRS web site. The EC301 has an open command set which allows scientists to write their own unique waveforms and even write custom software. # **Front-Panel Operation** The intuitive front panel of the EC301 allows you to quickly and easily set up several scan types (CV, LSV, steps and holds). Unlike many competitive models, the EC301 is a stand-alone instrument – you don't need to use a computer. The array of indicator LEDs make it easy to know the state of the instrument at a glance. #### **Software Included** The SRSLab software supports all the major electrochemical techniques including voltammetry, pulsed waveforms, step techniques, and EIS. You can even design your own custom measurements. Data is acquired over the TCP/IP interface or via IEEE-488 (GPIB). The software lets you easily configure sequences of experiments and shows you the data as they are generated. The data is easily exported to spreadsheets and graphing packages. #### **Designed for EIS** The EC301 was designed with electrochemical impedance spectroscopy (EIS) in mind. Instead of employing driven shields, we bring the measurement close to the cell. This means higher accuracy and less susceptibility to parasitic effects. Shunt resistor current measurements in all ranges enhance control loop stability, enabling EIS at high frequencies. The optional SR780EC Frequency Response Analyzer is needed for EIS measurements. Specifications can be found in the "Specifications" tab above. The SR780EC is a full-featured FFT analyzer (identical to the SRS model SR780) that is being offered to EC301 customers at a highly reduced cost. # **Compliance Limiting** Quite often, electrochemists are working with sensitive cells which would be destroyed if the full compliance of a potentiostat were brought to bear. Bubbles in a flow cell system can easily cause potentiostats to lose voltage control by blocking feedback to the instrument from the reference electrode. Without compliance limiting, a carefully prepared electrode will be ruined. With this feature, the user can simply select the maximum potential the counter electrode will be allowed to apply. When the limit is reached, it is clamped to the preset level. Compliance limiting guarantees safe operation even if control is lost. EC301 front panel #### **Floating Working Electrode** In normal operation, the working electrode current return path is tied to chassis ground. However, there are times in which electrochemists wish to experiment with working electrodes that are intrinsically grounded (e.g., water pipes, rebar in concrete, an autoclave). Once the shorting bar from the rear panel of the instrument is removed, the ground return path floats, allowing these experiments. # **Fast Cyclic Voltammetry** The EC301 supports scan rates up to $10\,\mathrm{kV/s}$. Potential, current and an auxiliary signal are all acquired simultaneously at 250,000 samples per second. Furthermore, an AC line detection circuit allows synchronization of repetitive scans with the power line cycle. ## **Built-in Temperature Measurement** Temperature is a critical parameter in many battery, fuel cell and corrosion experiments, but it is often not recorded. Not knowing the temperature at which the data were acquired can make it difficult to compare your results. With a built-in input for a 100 Ω platinum RTD, the EC301 makes it easy to acquire and plot temperature right along with the rest of your data. #### **Open Command Set** While our software supports all major electrochemical techniques, we realize that electrochemistry isn't static. When a new technique or procedure is developed, the open command set lets experimentalists write customized software to support it. You can write in LabVIEW, MATLAB, or any other language. # **Ordering Information** | EC301
SR780EC | 30 V/1 A potentiostat/galvanostat
DC to 100 kHz FRA for EIS | \$7,990
\$4,995 | |------------------|--|--------------------| | QCM200 | Quartz Crystal Microbalance | \$2,995 | | O100CAB | Replacement terminal cables | \$150 | | O100RTD | RTD for EC301 | \$250 | | O301RM | Rack mount kit for EC301 | \$100 | EC301 rear panel # **Power Amplifier (CE)** Compliance voltage $\pm 30\,V$ Maximum current $\pm 1\,A$ Bandwidth >1 MHz ($10 \text{ k}\Omega$ load, $<100 \mu\text{A}$) Slew rate $\geq 10 \, V/\mu s$ CE limit Limits counter electrode voltage when enabled $\pm 500\,mV$ to $\pm 30\,V$ Set range Bandwidth Bandwidth limit 10 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz, 1 MHz cutoff frequencies # **Differential Electrometer (EC19 Module)** Input range $>1 \text{ T}\Omega$ in parallel with 20 pF Input impedance Input bias current $<20 \, pA$ Bandwidth >10 MHz **CMRR** $>80 \, dB \, (<10 \, kHz)$ #### **Potentiostat Mode** Applied voltage range ±15 V Resolution $500 \,\mu\text{V}$ (200 μV performing an automatic scan) Accuracy ± 1 % of setting ± 5 mV Automatic scan rate $0.1\,mV/s$ to $10\,kV/s$ Noise and ripple $<20 \,\mu\text{Vrms} (1 \,\text{Hz to} \, 10 \,\text{kHz})$ #### **Galvanostat Mode** Applied current ranges $\pm 1 \text{ nA}$ to $\pm 1 \text{ A}$ in decades Resolution 16-bit Accuracy 1 A range $\pm 0.5\%$ of reading $\pm 0.2\%$ of range $\pm 0.2\%$ of reading $\pm 0.2\%$ of range All other I-ranges Automatic scan rate 1 pA/s to 2 A/s #### **ZRA Mode** CE_{Sense} and WE electrodes held within $\pm 5\,\text{mV}$ of each other Voltage offset #### **Voltage Measurement** $\pm 15 V$ Range Resolution 16-bit Accuracy $\pm 0.2\%$ of reading ± 5 mV Acquisition rate 4 us (250 kS/s) # **Current Measurement** ± 1 nA to ± 1 A in decades Range Resolution 16-bit Accuracy 1 A range $\pm 0.5\%$ of reading $\pm 0.2\%$ of range All other current $\pm 0.2\%$ of reading $\pm 0.2\%$ of range $4 \mu s (250 kS/s)$ Acquisition rate ## **Voltage and Current Outputs (front-panel BNCs)** Voltage output $\pm 15 V$ output Accuracy $\pm 0.2\%$ of $V_{RE} - V_{WE}$ Sense $\pm 5\,\text{mV}$ Output impedance 50Ω Max. output current 10 mA Filters No filtering or 10 Hz low-pass ±15 V (full range) Bias rejection Current output I_{WE} within $\pm 0.5\%$ of $(V_{BNC}$ Accuracy \times I_{Range}) ±0.2 % \times I_{Range} I_{WE} within ±0.2 % of (V_{BNC} (1A range) Accuracy (all other ranges) \times I_{Range}) $\pm 0.2 \% \times I_{Range}$ Max. output current 10 mA Filters No filtering or 10 Hz low-pass ±2 V (full range) Bias rejection # **IR Compensation** Positive feedback Range 3Ω to $3G\Omega$ (depends on current range) Resolution $1 \,\mathrm{m}\Omega$ (1 A range), $100 \,\mathrm{k}\Omega$ (1 nA range) Current interrupt Switching time $<5 \,\mu s$ (1 k Ω resistive load) Interrupt duration $100 \,\mu s$ to $1 \, s$ Interrupt frequency 0.1 Hz to 300 Hz #### EIS (using opt. SR780EC FRA) Mode Potentiostatic / Galvanostatic Frequency range $250 \,\mu\text{Hz}$ to $100 \,\text{kHz}$ Dynamic range 145 dB Sweep Linear or logarithmic #### **Temperature Measurement** Sensor 100Ω Pt RTD Accuracy ± 1 °C (-100 °C to +200 °C) ### **Rotating Electrode Output (front-panel BNC)** 0 to 10 V settable analog output Accuracy $\pm 1\%$ of setting ± 5 mV # **External Input (front-panel BNC)** $\pm 15 \text{ V}$ (potentiostat mode), $\pm 2 \text{ V}$ Input range (galvanostat mode) Potentiostat mode 1 V input corresponds to an applied voltage of 1 V Galvanostat mode 1 V input corresponds to an applied voltage of 1 A $10 \,\mathrm{k}\Omega$ in parallel with $50 \,\mathrm{pF}$ Impedance Bandwidth $>1 \,\mathrm{MHz}$ ADD TO SCAN Adds the external input voltage to # EC301 Potentiostat / Galvanostat button internally-generated scans DIRECT CONTROL Takes the control voltage or current button solely from the external input # **Rear-Panel Inputs and Outputs** Timebase 10 MHz, 1 Vpp Raw E ± 15 V output Raw I ±2 V output (1 V full scale) CE / 3 ±10 V, V_{CE}/3 voltage output, 1 MHz bandwidth Sync ADC ±10 V analog input CI sync TTL output for IR compensation Scan trigger Digital input. Falling edge begins automatic scan Program E/I $\pm 15 \text{ V}$ input (sum of internal and external voltage programs) ADC 1,2,3 $\pm 10 \text{ V}$ analog inputs (general purpose) #### **SRSLab Software** Communication IEEE-488.2 & TCP/IP interfaces Operating system Windows Measurements Cyclic Voltammetry (CV) Linear Sweep Voltammetry Cyclic Staircase Voltammetry (Tast) Square Wave Voltammetry Differential Pulse Voltammetry (DPV) Differential Normal Pulse Voltammetry (DNPV) Timed Hold Quartz Crystal Microbalance (QCM) Electrochemical Impedance Spectroscopy (EIS) **General** Dimensions 17" × 5.25" × 19.5" (WHL) Weight 26 lbs. Warranty One year parts and labor on defects in materials & workmanship